Catalogue canadien de recherches policières

E-mail analysis for investigators : techniques and implementation / Adam Szporer.

Cette page Web a été archivée dans le Web

L’information dont il est indiqué qu’elle est archivée est fournie à des fins de référence, de recherche ou de tenue de documents. Elle n’est pas assujettie aux normes Web du gouvernement du Canada et elle n’a pas été modifiée ou mise à jour depuis son archivage. Pour obtenir cette information dans un autre format, veuillez communiquer avec nous.

Localisation

Recherches policières canadienne

Ressource

Livres électroniques

Auteurs

Publié

Bibliographie

Includes bibliographical references.

Description

1 online resource (xi, 103 pages)

Note

M.A. Sc. Concordia University 2012.

Résumé

E-mail is a common form of communication in regular use today. As such, it is a normal part of investigating a person or a crime. At present, there are many tools to perform bulk analysis and basic searching, but our research advances the state of the art by applying text mining and unsupervised learning techniques to automate the e-mail analysis process. Our key goals are to group similar e-mails together and to identify the concepts (subjects of discussion) of those e-mail groups. We present several new methods to increase the grouping accuracy: e-mail domain analysis and word pair analysis. We also present a technique for concept analysis. These goals are achieved by integrating our research with the capabilities of Weka, an open-source machine learning suite, and WordNet, a lexical database of the English language. We apply this research to the publicly available Enron e-mail dataset. We verify the results by examining the comparative advantage of each new technique.

Sujet

Accès en ligne

Date de modification :